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Abstract

Staggered bioterrorist attacks with aerosolized pathsgerpopulation centers present a formidable
challenge to resource allocation and response planningrd3dponse and planning will commence
immediately after the detection of the first attack and withon little information of the second
attack. In this report, we outline a method by which resowltecation may be performed. It
involves probabilistic reconstruction of the bioterro@stack from partial observations of the out-
break, followed by an optimization-under-uncertainty @gaeh to perform resource allocations.
We consider both single-site and time-staggered muki-aitacks (i.e., a reload scenario) under
conditions when resources (personnel and equipment wheckli#iicult to gather and transport)
are insufficient. Both communicable (plague) and non-comoable diseases (anthrax) are ad-
dressed, and we also consider cases when the data, thedtiiee-af people reporting with symp-
toms, are confounded with a reporting delay. We demonst@teour approach develops alloca-
tions profiles that have the potential to reduce the proliglaif an extremely adverse outcome in
exchange for a more certain, but less adverse outcome. Werexpe effect of placing limits on
daily allocations. Further, since our method is data-drjwbe resource allocation progressively
improves as more data becomes available.
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Chapter 1

Introduction

This report describes a set of resource allocation teclesigieveloped to address the problem of
a “reload” scenario, i.e., a series of time-staggered hiotist attacks conducted over population
centers with an aerosolized pathogen. Such a problem ismagty challenging since it requires
one to allocate resources early, after the detection of tsiediitack and in ignorance (or with little
knowledge) of the subsequent attacks. Resources heregodfarse which are difficult to gather
and transport and may thus be considered scarce, for exametical equipment and personnel.
Current approaches leave much to be desired, since they suakéuse of the only source of data
in the aftermath of a successful attack, i.e., the morbislitgam, which typically consists of the
number of people showing symptoms. Instead, they rely heawidetection via aerosol sensors.
Such an approach has its merits; early detection, followelddavy prophylaxis, has the potential
to prevent an outbreak [1]. However, if the aerosolized pgém is not detected (for example, if
the attacked site is not instrumented with sensors), arreaktimay be expected, leading to a rapid
and large increase in demand for medical resources. A prepeurce allocation technique would
consist of drawing estimates of the resource demand fronathgable data, and performing the
resource allocation accordingly. Since the data streamressonably be expected to become more
informative as one progresses into the outbreak, demaimdagst and resource allocations should
be dynamically updated for accuracy. In this report, we destrate how the estimation may be
performed probabilistically, followed by a resource alltion using the uncertain resource demand
estimates. Our formulation allows the calculation of tls& associated with the allocation, and is a
function of a free parameter, representing the risk appefithe resource allocator or alternatively,
the risk associated due to the constraints of the trandpmtafrastructure. The results here are
preliminary, but show promise for both non-communicabld aammunicable diseases. Further,
the techniques are not specific to bioattacks; they can bsdmkin other scenarios where the effects
of an attack are delayed (i.e., there is an “incubation” jiamel an estimation has to be performed to
determine the cause. Thus the hazards posed by the percussaiesorption of chemical agents (or
toxic industrial chemicals) which have an “incubation” ijperof about a day, as well as radiation
exposure (somewhat larger delays) are also problems wheresource allocation technique may
find use.

The problem of the “reload” scenario was first described bynZdg [2]. The report had a strong
policy focus, and did not delve into technical means of asllrg the problems that could be
expected in a “reload” scenario. A detailed system-dynahsitudy was performed by Edwards
al.[3] and certain technical and procedural changes/targets suggested. However, the emphasis
was on detection rather than response. The problem of antestdd attack (or multiple small
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undetected attacks) was not considered.

The problem of resource allocation in case of an undetecieakthck presents some interest-
ing mathematical challenges. In such a context, the onlycgoof data is the time-series of pa-
tients infected with the aerosolized pathogen in questibnis information stream will be em-
bedded in the normal background morbidity stream that mighexpected in any population
center. During the aftermath of the bioattack, the backgdoonorbidity will be augmented by
hypochondriacs/“worried-well” individuals. Furthenrie-series of infected people showing symp-
toms will be confounded with a random reporting delay — itdéelc symptomatic people cannot be
expected to report to medical institutions immediatelgafhe exhibition of symptoms. Thus the
“signal” of the attack in the morbidity time-series may suffrom a low signal-to-noise ratio for
a significant duration, before the anomalously large matpigvel due to the attack triggers an
alarm.

In the absence of a background morbidity, the “signal” frofi@attack will consist of the time-
series of infected patients turning symptomatic and répgitb medical institutions for care. The
delay between infection and exhibition of symptoms is tleibation period, and is characteristic
of a disease, I.e., if the etiological agent is known, a mdéolethe incubation period is generally
available. The delay between the exhibition of symptoms @padrting for care is called the
“reporting delay” in this report. It has been modeled fortmalar populations (usually as a log-
normal distribution), but will probably differ from site tgite (i.e., it is best extracted from the data
at hand, with perhaps existing reporting delay models tdegus). The signal will also depend on
the number of people infected,(and in case of communicable diseases, this number cantherfur
divided into the index caseli,q, a stationary number, and secondary infectibls; a time-
variable quantity), the time of infectionand in case of dose-dependent incubation periods (e.g., in
anthrax), the dosB. Thus the time-series could be used to back-calcylsite, logio(D)} which
we will henceforth refer to as thetack parametersSince the inference will need to be performed
early after the detection, the time-series will be shord(anisy), rendering any estimate of the
attack parameters uncertain; thus they are best inferrgutadmbility density functions (PDFs).
Samples of attack parameters, drawn from the PDFs condiion time-series data could be used
to perform posterior predictive runs (with a conventiongidemic model) to bound the possible
evolution of the outbreak. The ensemble of runs embodiesge raction (but not all) of the
uncertainty regarding future demands on resources (eé.g/ould not capture the uncertainty /
inaccuracies in the epidemic model), and allows one to dens resource allocation procedure
that could reduce the chances of an extremely bad outcominimepwhat a desirable outcome
might be is case dependent, but will extend beyond minirgiie expected number of casualties
and will be addressed in this report.

The question of an “optimal” allocation of resources, gianuncertain demand for them, is ad-
dressed using a multistage optimization technique. In oase'reload”, one will have uncertain
demands at multiple sites, with differing levels of uncemtya However, both the epidemic and
the demand for resources will evolve over time, allowing tmeonsider dime profileof resource
allocation, which can be updated as the morbidity timeeselengthens. The updating will be
constrained by the capacity of the transportation inftattire as well as the risk-appetite of the
emergency manager, if subsequent attacks are expecteésouwtees have to be husbanded. The
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resource allocation profile can be used to dispatch ressimafe short term (timescale of a day)
and plan for transportation needs in the long te@t( days). The constraints placed on the re-
source allocation profile can have a significant impact orrigle(henceforth defined as the PDF
of casualties, given an ensemble of outbreak realizatiodsaaresource allocation profile). These
constraints can be parameterized and we investigate tisgisen of the risk to these free param-
eters. The parameterized constraints are termed “fre€ediney are governed by transportation
and/or risk appetite, which are exogenous to the informmatientent of the morbidity time-series
and thus cannot be informed by better data analysis.

Apart from a multistage optimization technique, resourtecation may also be performed using
a “market-based” technique, i.e., a system where indilidnaties (“agents”) negotiate/converge
to a resource allocation profile depending upon their neddapplies of resources. Such a system
requires the relevant information (on the need for res@iat®arious sites) to permeate throughout
the system (the “market”) via interactions between “age(dse of whom may be a “market-
maker”). This is a novel technique, but has not been exploréais study. This has the potential
to arrive at better resource allocation in real life, butefgaenany modeling and computational
challenges. However, we include a review of literature as #nea in this report.

The report is structured as follows. In Chapter 2, we reviesent work on the inference of at-
tack/outbreak parameters from time-series of morbiditad#/e also include a short discussion of
the reporting delay, as well as a review of robust techniguesulti-stage stochastic optimization.
The chapter also contains a description of “market-based™agent-based” modeling approaches
to resource allocation. In Chp. 3 we address the questionwfthe reporting delay may be esti-
mated and used to correct the morbidity time-series (whatsist of symptomatic patients who
have reported to medical institutions) to obtain an appration the actual number of infected,
symptomatic people (some of whom may not have begun to sedicatattention). The impact
of the “corrected” time-series on the inference of attackapseters will be studied. In Chp. 4
we formulate the resource allocation problem (includingitireans to accommodate multi-site de-
mands with disparate levels of uncertainties in the dematithates) and present examples using
a non-communicable disease, specifically anthrax. We shelgffect of the “free” constraint pa-
rameter, and also show how a “naive” allocation (an all@cebiased on the mean of the ensemble
of outbreak realizations) leads to a very risky allocatidm.Chp. 5 we show how the inference
procedure can be extended to address a communicable dispasdically, HIN1 flu modeled
on the 1918 pandemic; the process of conducting posteraaligtive runs and performing the re-
source allocation is the same as in anthrax and is omitte@hm 6, we summarize our findings,
and identify topics which need further investigation. Ténasay be needed to accurately gauge the
potential of our technique for responding to both bioattaakd epidemics/pandemics engendered
the increased contact between humans and wildlife, spbyrédth economic, climate change and
spread by globalization.
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Chapter 2

Literature review

In this chapter, we review some existing literature on thference of outbreak/attack parame-
ters, stochastic, multi-stage optimization and agenethasarket simulations. The latter are two
different radically different approaches to computingo@se allocations,

2.1 Inference of attack parameters

The approaches used to characterize (i.e., estimate gisaakneters) partially observed outbreaks
are very different for non-communicable and communicakdeases. For non-communicable dis-
eases, current literature consists of a few studies innglwtleases of aerosolized anthrax. Walden
& Kaplan [4] introduced a Bayesian formulation for estimatithe size and time of a bioterror
(BT) attack and tested it on a low-dose (less thags)Ehe dose at which a person has a 25% prob-
ability of incurring the disease) anthrax release corresigtg, approximately, to the Sverdlovsk
outbreak [5] of 1979. Their formulation incorporated anubation period model developed by
Brookmeyeret al.[6] and demonstrated the use of prior distribution$\bto reduce uncertainty in
the inferred characteristics. Brookmeyer & Blades [7] us@daximum likelihood approach, along
with the anthrax incubation model in [6], to infer the sizetloé 2001 anthrax attacks [8] before
estimating the reduction in casualties due to the timelyiathtnation of antibiotics. Both [4] and
[7] developed similar expressions for the likelihood fuant i.e., the probability of observing a
patient time series given an attack at timeith N infected people. The incubation period model
in [6] was not dose-dependent, and hence no doses weresifi@rthese two studies.

The BARD [9] effort also seeks to characterize a BT attacknfithe presentation of symptoms.
It attempts to estimate the location, height, and time of idmoene anthrax release, as well as
the number of spores. The observables consist of respratsits to emergency departments,
as might be obtainable from syndromic surveillance systeoth as RODS [10]. The model
that relates these observables to the characteristice@utbreak includes a Gaussian dispersion
plume [11], Glassman’s infection relation [12], and a lagrmal distribution of incubation peri-
ods, with dose-dependent mean and standard deviation.\loviBARD’s use in an urban context
is only approximate since Gaussian plumes are suited m#inlypen spaces [11]. Further, esti-
mation of the release parameters was an intermediate aifyj;ing thrust is to detect anomalous
morbidity patterns using a spatiotemporal approach, wisadonsiderably assisted if the spatial
distribution of infected people (i.e., the “footprint” oi¢ plume) can be estimated. A similar,
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spatiotemporal approach to attack parameter estimatiotedound in Legraneét al.[13]. The
formulation is Bayesian, and the paper contains a thoroagting of their estimation technique
against competing ones. The study also dealt with how medisaurces/care could be prioritized
spatially, based of the severity of infection in differeattions in the attacked site.

In this report, the inference of attack parameter is pergmsing the Bayesian technique de-
scribed in [14]. The method is solely temporal and thus hagpka data needs (it does not
need any spatial information, unlike [9] and [13]). It yisldstimates of the attack parameters
{N,1,l0010(D)}. The data consists of a time-series of the number of new mgatiexhibiting
symptoms on a daily basis. The model validation performefd4) demonstrated that about 5
days of data are sufficient to develop informative PDFs ofatt@ck parameters and perform pos-
terior predictive runs. In certain cases, 5 days of datacctedd to a wrong estimation, but they
were quickly corrected as more data became available. Hawvawshortcoming of the technique
is that it requires a time-series of tlaetual number of symptomatic individuals, including those
who had not reported for medical care. In this study we wWeistigate how such a time-series
may be approximated from a time-series of symptomatic idd&ls who seeking medical care.
The difference between the two arises from a reporting defaigh has been modeled [15], and
which can be explicitly estimated from data. This is desliim Chp. 3.

The spread of communicable diseases shows many dynamatatds and gives rise to a different
parameter estimation problem. Traditionally, this has messtimating the rate of spread of a
disease from data. There is a vast literature on fitting cotiweal SEIR models to data [16, 17,
18, 19, 20, 21], and of late, this has been extended to nethaskd epidemic models [22] as well
as inferring chains of transmission [23]. A simple approsxlestimating outbreak parameters is
described in [24]. The authors assume that there existsexdgpendent infection intensity and
an unknown number of infected and infectious individualfie Tunknown) infection intensity,
convolved with the incubation period of the disease resultie time-series of people exhibiting
symptoms. This technique was used to back-calculate thébauwof individual infected with
HIV using the data collected in 1980-1988. In this work, wdl wse this simpler model of a
communicable disease to infer the number of secondarytinfeas well as estimate the shape of
the infection intensity curve.

2.2 Least-regret and multi-stage stochastic optimizatiotechniques

Given that we can obtain a probability density function ttegbtures the uncertainty in the extent
of an anthrax attack, the problem becomes one of optimdlbgaiing resources to minimize the
expected number of deaths. The idea is to sample the PDF amdstenarios of the number of
people who will arrive at the hospital each day over the ed@éthe attack. As we expected, these
scenarios can, and do, vary widely, especially early in tteck when little is known from which
to calculate the PDFs. The challenge is to create an optiloizenodel, based on these scenarios,
that takes into account other relevant constraints, inoptbgistics limitations, including the risk
appetite of the emergency manager, and social, or fairgesstraints that allocate resources pro-
portionally over several attack sites. We give two appreach so-called “least-regret” model and
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a more classic stochastic optimization with recourse modé& combine these to get an optimal
allocation for today from the stochastic optimization micgleng with a proposed allocation over
the entire period from the least-regret model.

The idea behind the least-regret approach is first to soles@urce allocation problem for each of
the scenarios. Since for each scenario we know exactly howy mpe@ople arrive and we know the
expected effectiveness of our resources, the optimizatioblem is a classical resource allocation
problem that is easily solved. In fact, such problems amggttforward linear programming prob-
lems; many implementations of fast, reliable algorithnmesarailable to solve them. After solving
these problems, we have a resource allocation scheduldamainimal number of deaths for each
scenario. At this point we could make a naive choice of simyding the average of all of the
allocations for today as our choice, but this has certaiwbeks, as we report in [25]. A better
strategy is to solve a final optimization problem that pickslocation schedule such that we de-
viate as little as possible from the minimal number of deatlesach of the scenarios. Specifically,
let r be an allocation schedule, i.e,,is the allocation made on day Let D} be the minimum
number of deaths obtained in scendrand letD;(r) be the number of deaths that would occur if
allocationr is used in scenario Then the least-regret problem is to minimize over all adtoan
schedules the quantity

K
Z(Di(r) -Dj)?,

whereK is the number of scenarios. This allocation has the advarghigot allowing any scenario
to dominate the calculation. Of course, other criteria ddug postulated, but this formulation is
appealing on both computational and practical groundsmFa@omputational point of view, this
will result in a quadratic programming problem for which te@re many good algorithms.

In our experimentation and testing we included a number oktaints that are meant to show
the ability of the model to handle a variety of situationsttimay reasonably arise. For example,
we considered bounds on the number of units of resource thad e shipped on each day, we
included a “ramp-up” at the beginning to allow for a logisti@sources to be put in place, we
included an assumption that allowed for the effectivenédseatment to vary over the course of
the attack, and we allowed for the reuse of resources if pitieceiving them died.

We also included in our model the possibility of an attack aother target (the “re-load” case)

within a few days of the first attack. In this case we had toiekj constrain the solution to make

allocations to both cities. Without this, the optimizatimodel could achieve the same minimal
number of deaths by allocating all (or most) resources tg onke city. Our assumption is that
such an allocation would be socially unacceptable, so we@ddconstraint that ensured that all
targets received proportional allocations.

We now describe the stochastic optimization model, whickuitles the above constraints.

Stochastic optimization with recourse provides anotherenconventional way to choose resource
allocations under uncertainty. If we have some idea ab@uptbbabilities of events in subsequent
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days, perhaps (as in the present application) based onib@étdata and incoming observations,
we can formulate models that account for corrective actiengcourse — we can take once more
is known, and we can make today'’s decisions in light of exgebotcourse costs.

With both least-regret and stochastic programming fortnarhs, the goal is to make a reasonable
decision about what resources to allocate today. Tomorrewwl have gathered more data and
can rerun the calculations with updated data to help maketa@w’s allocation decision. In our
recourse formulation, we used today’s allocation as thé $iegye and allocations for the subse-
guent days under each of the scenarios generated from todaid as the second stage, and with
expected deaths as the cost of recourse. That is, our olgegts to minimize expected deaths,
subject to the previously described constraints. Thisltesu a single linear programming prob-
lem (a “deterministic equivalent”) that is larger than leeesgret problem, but faster to solve. Both
formulations give similar decisions about today’s allo@at A detailed description of our recourse
formulation appears in [25] and in Chapter 4 below.

2.3 Agent-based market simulations

The previous sections have dealt with centrally plannextation of resources (goods) in response
to a crisis. Allocation of goods can also be performed usiagket mechanisms, based on a price
of the good, attributes of the buyers and sellers or govenimpelicies. Over the last 15 years,
agent-based simulations have been used to model and wamtetstw markets function, where a
market in the formal sense is “any context in which sale ardlase of goods and services takes
place” [26]. Each market tends to be for a single good (ea&rcwes), sellers are those who are
willing and able to sell the paticular good and buyers ares¢hwilling and able to purchase it.
As compared with the centrally planned allocations of thggseds and services, markets provide
mechanisms for allocating based on the price of the pagi@dod or service. Given that in a real
market individual buyers and sellers have private encapsdlknowledge about themselves (as
well as about other buyers and sellers) and have privatepsatated procedures that they follow
and that the resulting market behavior based on the publiorecof these buyers and sellers is
dynamic, nonlinear and complex, agent-based models ackeahapproach.

Agent-based market simulations have been used extenswvehodel a wide array of markets,
starting largely from the seminal work of Palmer et al [27ke#od [28], Arthur et al [29] and
Epstein and Axtell [30], the later of whom formalized the inas of agents as “people” in “en-
vironments” that follow “rules”, all of which results in enrgent “social structures”. Their work
indicated that the traditional theories of market equilibr were very sensitive to the set of mar-
ket conditions (buyer behavior, seller behavior, numbédrbuyers and sellers, information and
market-clearing mechanisms).

Since then, there have been a vast expansion of researchniyy mmerket domains that focus on
analyzing market design (auctioning and other market n@shaes for rationalizing resources from
sellers to buyers) and learning and adaptive seller/bugleatiors. A prominent example is agent-
based simulation of spot markets for wholesale electricgypwhere wholesale electric power that
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has not already been sold through long-term contracts ésisahort-term markets. As described
in [31], many electric power market models have been dewslqgpimarily to analyze power buyer
and seller learning and resulting market dynamics, coniyl@nd ultimately the reliability of
these spot markets to deliver power and efficient prices. ghiBcant motivation for this body
of research was the failure of electric power spot marketSatfornia, where poor spot market
designs resulted in market-induced supranormal pricegeoftts and ultimately rolling “brown-
outs”.

Another prominent example is agent-based simulations anh@iral markets, where changes in
market design and buyer/seller behaviors can have comgpidarseen outcomes in market prices,
i.e., the value of assets traded and stability i.e, thedigpiand fluctuations in valuations that can
destabilize and even stop a market from functioning. As idlesd in [32], NASDAQ has used
agent-based simulations to analyze impact of regulatoangés on their market under various
changes in buyer/seller strategies, price increments ammhsfurthermore, eBay uses intelligent
agents to help its customers with their market bidding.

Ehlen et al [33] used Sandia N-ABLE model to analyze how teaé pricing of consumer power
would affect wholesale and transmission market pricing stadbility; Sprigg and Ehlen [34] use
ASPEN [35] to simulate how agents can find their Nash equuirbrprices with little information
and simplistic decision rules. Agent-based simulationgl@so been used to investigate how spot,
future and option markets could be destabilized by terrexsnts [36].
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Chapter 3

Modeling reporting delay

As discussed in Chp. 2, Sec. 2.1, the estimation of the defieanesources requires one to charac-
terize the number of index cases, and if the disease is comcatla, the secondary cases too. This
estimation is performed using the time-series of new peexplgbiting symptoms. However, since
symptomatic people do not seek care immediately on exhggymptoms, this time-series is fre-
qguently not available. What is available is a time-seriesyohptomatic patients who have sought
care. Given a daily time-series of leng®hthe reporting delay (which, in case of the Sverdlovsk
anthrax outbreak was characterized as a lognormal disitmibwvith a median of 2.7 days [15])
leads to a severe under-reporting of the number of sympiomaver the time intervgR—5,R).
Any inferences drawn with such an erroneous time-seriesbsimisleading; ignoring the last 5
days of data is not an option since that would increase thgtheof the observation period. In
a situation where a response has to be formulated quicktyy an approach would be useless.
Thus one has to consider either “correcting” the data forrdporting delay, or formulating an
estimation problem for the index cases which incorpordtesielay.

The number of people seeking care on a given day can be alveagsKked about their time of
exhibition of symptoms. Thus for a given reporting dgyone can construct a time-serilig
consisting of the number of people who exhibited symptomdapn,i <r. One can curate such
time-series oveR days to obtain a table. An example of such a table is Tablev@ich was
generated from a simulated anthrax attack (described in 2% with a reporting delay model
obtained from [15]. Here, each colunnrcontains information on the number of people showing
symptoms on each dayi < r. The rows of the table denote the day

Compare the column= 6 with the last column; = 9. Np ¢, the number of people turning symp-
tomatic on day 0, as known on reporting day 6 (alternatieatyapproximation olg, the number
of people who turned symptomatic on day 0) is not very diffiéfeom the estimatép 7. This is
because most d¥lp symptomatic patients have sought medical care (i.e., haga eported) by
Day 6. However, if one considers the caséviaf Ng ¢ andNg g differ by an order of magnitude. In
fact, each row of the table traces out the cumulative distigim function of the reporting delay, and
asymptotes to the true numberMf of the number of index cases who turn symptomatic oniday
If one assumes a model for the reporting delay distributeag.( a log-normal ofF -distribution),
one can obtain the model parameters by regressing to thendhtatable; obtaining the asymptotic
valueM;, given the first few days of observatioNs;,r < Ris then a trivial exercise.

An alternative approach to estimating the attack paramétdo incorporate the reporting delay in
the model used for estimation. The data consists of the nembruof symptomatic cases seeking
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Table 3.1. Number of individualsN;;, turning symptomatic on
dayi as known by day.

0 1 2 3 4 5 6 7 8 9

0O 16 45 70 89 100 108 115 116 11]
- 14 161 328 457 548 605 649 678 70
- - 31 338 710 1006 1207 1340 1415 148
- - - 44 509 1077 1484 1759 1932 205
65 570 1211 1669 2008 2219
- - - - - 48 453 1042 1540 1835
- - - - 62 497 1053 1501
- - 51 428 880

- 39 379

r=

coO~NOOIT A WNPEO
1
1
1
1
~N = o Y

care, collated on a daily basis. This data can be obtainedetfprming column-wise sums in
Table 3.1 (which would provide a running sum of the total nembf people who have sought
care by day) and subtracting the column-wise sums from their predecgssich would provide
the new daily cases). Consider that there exists an unknonbarN of index cases, who were
infectedt days before the reporting of first symptoms. Assume that @nage dos® was the
infecting dose. Lef|(x;D) represent the dose-dependent incubation period of antfiiiaen the
number of peopl®; seeking care on dayi.e., in the time intervalti_1,t;) is given by

=N/ f(sD)(Clt—sp)—Clt 1—sp))ds (3.1)

ti-1

whereC(t; p) is the cumulative distribution function (CDF) of the reppg delay. This formulation
was adapted from [24]. The parameters of the C@Falong withN, T andD, can be estimated
from the time-series;.

In this work, we will investigate the first approach ratheartihe one based on Eq. 3.1. The efficacy
of EQ. 3.1 has been investigated in [24]; furthermore, neagtes more parametes (t, D, p) from
less data (one time-series) than the tabulation approathairesses a distribution model to a table
of data. Furthermore, it allows one to compare the efficacy applicability of validated models
that exist in literature with a more realistic data-stream.

Below, we present a formulation that allows us to model thmoréng delay ad -distribution.
The parameters of the distribution are estimated from tha olaTable 3.1 using a least-squares
method, and thereafter used to correct the observationttorobstimates d¥l;. We then usé/; to
infer the attack parameters, and compare them with infe@edcawn fronM;*, the true time-series
of symptomatics. These tests are performed using synttlatacfrom a simulated anthrax attack.
The reporting delay in the simulated attacks is modeledguia log-normal distribution in [15].
We also compare the posterior predictive runs obtained fvgrandM;" to gauge what the impact
of reporting delay correction might be on the allocation heeasm.
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3.1 Formulation for correcting the reporting delay

In correcting for the reporting delay, we assume that the BQRke delay between when an individ-
ual turns symptomatic and seeks treatment will follol+distribution. The fractiorfj ; = N; ; /M:*

of people who turned symptomatic on diags known by day will then follow the I -distribution
CDF,

/0 k-1,
oy YkX/0) 57" d e g

with shape parametér> O and scale paramet8r> 0 fixed over time. Herel] (k) is the Gamma
function andy(k,x/0) is the lower incomplete Gamma function. This implies that @DF of the
reporting delay depends only on the delay between turningpgymatic and seeking treatment,
A =r —i. Due to the coarse binning of the data, we allow a shift betmfeandx, usingx = A+ 9,
whered is our third fitting parameter.

Because we do not kno:", however, we will instead fit the rati@ r/ fi 11 = Ni r/Ni r 11 (illus-
trated in Table 3.2 for the test case), in which the unknowm tgancels, using the fitting function

F(A+3;k,0)

N(Ak8.9) = a5 1k 0)

(3.3)

The regression was performed using ITT Visual Informatietu8ons IDL with the routine MP-
FIT by Craig Markwardt. MPFIT is based on the MINPACK-1 Fartrpackage for least-squares
minimization. When performing the regressions describadws, we omitted the day= 0 as well
as the delayA = 0 data. After the CDF model parameteks§, &) are determined from the regres-
sion, estimates d¥1* (given in Table 3.3) are computed usikfy = N; g/ fi g, whereR is the most
recent reporting day.

3.2 Testcases

A simulated population of 80,000 people was exposed to Amxthresulting in 23,917 being in-
fected. The average dose of those infected was 2,754 sgdreglapsed time between developing
symptoms and seeking treatment for each individual wasmfemm a log-normal distribution,

[_ log(x/ u)] , (3.4)

202

f(x;u,0) = ex
(X 1,0) Torox P
with = 2.73 ando = 0.7, consistent with the Sverdlovsk incident, whgrg@, ando are given in
days. Individuals turning symptomatic on days [0, 8] who sought treatment by day= 9 were
included in the observations (see Table 3.1).
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Table 3.2. RatiosNi,/Ni ;1 computed for fitting the fraction
of individuals that turned symptomatic on dayhat have sought
treatment withimA = r —i days.

A=0 1 2 3 4 5 6 7 8

i=0 | 0.0000 0.3556 0.6429 0.7865 0.8900 0.9259 0.9391 0.991418.9
1|0.0870 0.4909 0.7177 0.8339 0.9058 0.9322 0.9572 0.9686 -
210.0917 0.4761 0.7058 0.8335 0.9007 0.9470 0.9554 - -
310.0864 0.4726 0.7257 0.8437 0.9105 0.9392 - - -
41 0.1140 0.4707 0.7256 0.8312 0.9049 - - - -
510.1060 0.4347 0.6766 0.8392 - - - - -
6| 0.1247 0.4720 0.7015 - - - - - -
710.1192 0.4864 - - - - - - -
8 | 0.1029 - - - - - - - -

Each column of Table 3.3 shows the corrected values as detxinasing data available only up to
dayR=r. Simply for comparison, the final column shows the actual benof individuals who
developed symptoms on a given day. This pristine data woeith@ available in the case of a real
attack but is useful in analyzing the accuracy of our coroects applied to the simulated data.
For reporting dayR = 6, we will present PDFs drawn from the corrected data as cosdda those
drawn from the pristine data. Figure 3.1 directly compalesraw observations, the observations
after being corrected for the reporting delay, and the jpiestlata for the case being analyzed. The
corrected curve follows the pristine data closely with thkeeption of on the most recent day. Our
goal here is to determine how sensitive the PDFs will be tieaihces between the corrected and
pristine data.

Figure 3.2 compares the 1D PDFs of the number infected, e @if infection, and the logarithm
of dosage, as determined from the corrected observatiahthamristine data. On D&y = 6, the
pristine data shows a bimodal distribution for the numbégated, shown in the top panel, with
the primary peak most closely reflecting the actual numbiecied. The PDF developed from the
corrected data is much more narrow and suggests a signljicantller infected population. If
we take an additional day of data and perform this comparieoiR = 7, we find that the PDF
developed from the pristine data is no longer bimodal ancétseb matched by the PDF from the
corrected data. FdR = [8,9], we find that the PDF from the corrected data very closely hestc
that from the pristine data, showing that our correctionusti@rovide very reliable results as the
epidemic progresses.

The middle panel of Figure 3.2 shows the PDFs of the time @ftindn. We find that the peak for
the corrected data is close to that for the pristine data viver6. When looking aR = [7,9], we

find that the PDFs match for the corrected and pristine dg@navalidating our method. In the
bottom panel, we see that the PDF of the logarithm of dosageich wider for the pristine data as
compared to the corrected data R 6. As was the case for the number infected, the difference
between the PDFs for dosage is much smalleRfer [8, 9.
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Table 3.3. Each column provides the estimaig of the number
of individuals turning symptomatic on dayusing only data col-
lected on days < R. The final column shows the actual number
of symptomaticsM;*, for comparison.

R=4 5 6 7 8 9 M
137 115 118 121 119 119 123
889 700 708 707 714 72b 753
2051 1541 1567 1549 1545 1569618
3323 2318 2305 2249 2240 2262340
- 2557 2626 2549 2580 25982651
- - 2058 2226 2371 23852477
- - - 2256 2278 2340 2350
- - - - 1973 1926 1998
- - - - - 1760| 1690

oO~NO O~ WNEO

Figures 3.3 and 3.4 show 4000 samples from the joint PDF cditfaek parameters as determined
from the corrected observations and the pristine datagmsely. As was seen in the 1D PDFs,

the distribution is significantly narrower for the corregttdata as compared to the pristine data.
This could give an inaccurate picture of the uncertaintyhmattack parameters when determining
the resource allocations. However, the corrected datawg\e starting point for making resource

allocations that was not available with only the raw data.

25



2500

2000

1500

Symptomatics

1000

500

Pristine
Reported
Corrected

Figure 3.1. Number of individuals who have reported by Day
R = 6 having developed symptoms on days [0,5]. The long
reporting delay results in a large discrepancy between tineber

of individuals who have sought treatment by Day 6 (blue) doed t
number who actually developed symptoms on a given day (red).
Also shown is our estimation of the total number to develapsy
toms (black), which closely tracks the red curve excepttierfinal
point.
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Figure 3.2. Comparison of the 1D PDFs of the number of indi-
viduals to be infected (top), the time of infection (middlahd the
logarithm of dosage (bottom), based on the pristine datatlaed
corrected data on Day = 6, as presented in Figure 3.1.
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Figure 3.3. Evolution of the epidemic using 4000 samples taken
from the joint PDF of the attack parameters based on the ciete
data on DayR = 6 as presented in Figure 3.1. The actual number
of people showing symptoms by Day 6 is plotted using symboals.
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Figure 3.4. Evolution of the epidemic using 4000 samples taken
from the joint PDF of the attack parameters based on theineist
data, for comparison to Figure 3.3. The actual nhumber of lgeop
showing symptoms by Day 6 is plotted using symbols.
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Chapter 4

Resource allocation in attacks with
non-communicable agents

In this section, we formulate a resource allocation probleased on probabilistic reconstruc-
tion of an attack’s parameters, as discussed in [14]. Thetisal of the problem results in a
time-dependent allocation profile, which can updated withavailability of information and con-
strained by the actual capabilities of the transportatidrastructure. This enables an efficient yet
realistic allocation of resourcesin a “reload” scenarin.this chapter, we will use anthrax as the
agent for conducting the attacks.

4.1 Formulation

The problem of resource allocation in reload scenarios v@geed by two non-dimensional num-
bers, which are ratios of timescales. The response to ataakabf a reload nature, is governed by
three main processes viz,

1. the time-scale of the epidemic/outbregak, For the anthrax attacksg ~ 15 days.

2. the time-scale of the transportation infrastructumg, This may be the time required to
gather and transport significant fractions of the resoueseahd, starting from a “standstill”.
Typically Tr ~ 2 days.

3. the stagger time-scate. This is the average time-delay between subsequent attacks

The following time-scale ratios should hold if a set of stawggl bioattacks are to be amenable to
the resource allocation techniques outlined here:

e Ts/Te < 1. This condition indicates that the stagger should be redtismall, e.g., typically
less than the time required for the first attack to be detedtéslexpected that the heightened
security posture after thaetectionof a bioattack will prevent any subsequent attacks. Also,
the parameter domairs/1e > 1 indicates a large separation between two bioattackse thes
can be addressed separately and do not constitute a “rescadario. A “good” value for
'l's/'l'E is 0.2.
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e Tr/T; < 1. This condition indicates that response time of the trartsion infrastructure
should be significantly smaller than the epidemic, so as¢oracodate changes in resource
allocations, as dictated by the data stream. An inabilityeBpond to the dynamic changes
in resource demand essentially renders the current treditnseless; one may as well con-
sider a static/point estimate of the resources requiréaatie it, and ignore the information
content of the morbidity streams. A “good” valuetig/T; ~ 0.2.

4.1.1 Optimal allocation of resources

As noted above, the basic problem is one of making optimatation of resources under signifi-
cant uncertainty. In previous work, we showed how to capiiiseuncertainty in a PDF that can be
used to predict the number of patients who arrive at the lalsgiquesting treatment. Specifically,
we construct a number of such scenarios that are consistdmth& data we currently have.

The basic strategy is to use the data that we have to make sialeof how much resource to
allocate today. We also estimate the quantity of resourtasright be required in the future
(i.e., a resource allocation profile) to plan future logiatirequirements. When new information
is obtained the next day, a new estimation of the attack patens (and the resource demands)
is performed. The scenarios are recalculated in light ofrieey data, the available resources
are decreased by the amount allocated today, and the atiocatalculated. Thus we have one
decision variable: the amount we allocate today based oinfinenation at hand. Let that variable
bea.

We adopt the following assumptions and notations: Let

e K be the number of scenarios;

e T be the number of days that we consider, i.e., the planningtroof the epidemic;
e Ny j be the number of people requiring treatment who arrive onjdayscenaric;

e 1 j be the allocation made on dayn scenaric;

e Dy j be the number of people who die on dpin scenaridk;

e Dy be the total number of people who die in scen&gio

e R be the total number of resource units available for the kitathere we assume for sim-
plicity that one unit of resource treats one patient;

e 5 j be the number of resource units available on gay scenaric;
e tj be the fraction of people, arriving on daywho will die having been treated;

¢ u; be the fraction of people, arriving on dgywho will die not having been treated.
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We assume that those arriving later in the attack will be migedy to be successfully treated.
This is motivated by the fact that longer incubations gelheiadicate a lower dose exposure
(or a robust constitution). Thus we assume that > tj anduj1 > uj. In practice, we make
this difference 11 —t; = Uj+1 — u; = € = 10~°) small and it merely serves as a mathematical
stratagem to remove multiple solutions.

To construct the optimization problem, we need to specié/dhjective function. As a first cut,
let us assume that we want to minimize some function of theafuitme number of deaths in each
scenario, i.e., we seek to minimize

K
> M(Dy)
&

whereM(Dy) is some measure @y. We could consider various measures, but clearly one could
takeM to be simply the expected number of deaths. The optimizgtioblem is then

K

min Yy M(Dy),
a k;

where we have to specify constraints on resources and on diaermputeDy,. The resource
constraint is, clearly,

0<a<R
Given the treatment assumptions described above, we ciy easmpute
Dij = rijtj + (Nij — T j)u;j. (4.1)

For day 1, we tentatively substitugefor ry ;.

The allocationsy j, j > 1 can be chosen to be the optimal allocations for scenamgven that
allocationa was made in day 1. These allocations will be constrained|bsvis:

n = 0

T
;rk,j < R-a for eachk. (4.2)
=

Although itis possible to iteratively solve problems fochacenario separately, it is more efficient
to make the collection j variables in the optimization problem and solve one largd@m rather
than K smaller problems for each trial valueaof
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Before we pose the final version of the initial problem, we traddress an important situation.
It is possible that in some scenarios, an allocatoor ry ; will be greater than the number of
people who arrive, i.ea > Nk 1, in which case, the value @y ; from above will not correctly
calculate the number of deaths. To handle this situati®tead of substituting for all ry 1, we
retain separatg, 1 variables and impose the constraigt < afor all k. We also impose the simple
bound constraints, j < Ny j for all (k, j), and we change (4.2) to

T

;rk,j <R-—rg1.
j:

Another important concern is that without further consitsj the optimal choice ad may be to
allocate all possible resources on the first day, which saettikely to be the best policy. One
way to address this issue is to make tentative allocationalfalays in the planning horizon, i.e.,
to introduce decision variableg > 0 for 1 <i < T and to restrict each scenario’s allocations by
e,j < aj, with a; = aand

In other words, we decide priori, that the daily allocation cannot exceed a certain leveiiOb
ously the level chosen has a significant impact on the qualitiie allocation calculated. This is
studied further below.

Of course, the purpose of the exercise is still to choose theday’s allocatiora = a;. Another
possibility is to penalize over-allocation of resourceskéeping with some standard approaches.
To do this, we introduce a penalty term in the objective fiorcbf the form

p-(a—rk1)+,

wherex; = x if x> 0 and 0 otherwise, angd is a constant chosen to appropriately balance the
costs, i.e., penalize wastage / overallocation of reseuré¥e choose this form for our studies
here.

Policy makers may further wish to limit daily allocations s$pecified fractions of the available
resources, sag; < ojR For simplicity, below we use a common valag= o < (0,1] for all ]
(with o = 1 imposing no further restriction).

The final topic we consider here is the reuse of resources.ofedna high percentage of patients
being treated will die anyway and they will die at a nonumfaiate. Some, in fact, will die quite
early and their resources can be used on incoming patiergta fdr estimating the rates are not
readily available, but reasonable approximations can lemBRased on typical treatment progres-
sions, the longer one survives, the more likely completevery becomes. Thus the percentage of
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people who die aftem days of treatment should increase rapidly for a few days hed gradually
decrease. As a first cut, we assumed a ten-day period and ssagle function,f, = 0/ zlgl f|9
with 9 =n/(1+expn/2)) to estimate these rates (wifh = 0 for n > 10). This is in the form
of the expected percentage of people being treated who ieilt days after treatment has begun.
Given fy, it is straightforward to estimate the number of resourted will be available on any
given day, as in (4.5) below. Along the same lines, as notedelthere will be some scenarios
for which allocations will exceed demand and the extra ressiwill likewise be available for

incoming patients. The number of people who will die is gitlen by (4.1).

Our optimization problem is shown in Figure 4.1. Some reraatbout it are in order. It is a two-
stage stochastic optimization problem with recourse. Tisedtage is today and the second stage
is days 2F. Each scenario takes recourse on the basis of today’s ailaand does the best that
it can after that. Constraints (4.3), (4.4), and (4.5) thgetmply that each scenario consumes at
mostR resources.

1 K
min — M(Dk) +p(a—r
a,rk,]-,sk,ijgl{ (k) p( k,1)+}
subjectto: 0 < a<oR
0 < rj<min(Nj,0R)
1 < a
i = $j (4.3
%1 = R (4.4
Sj = Sj-1—Tkj-1 (4.5
j-1
+ z fntj_nrk’j_n
n=1
Dij = tjricj+ (Nej—rij)u
T
Dk = ZDk*j'
j=1

Figure 4.1. Multi-scenario resource allocation problem.

One could, in principle, construct a multi-stage problendbyding the days 2F into two or more
stages. Suppose, for example, that the second stage is-daysl#n one could trace each of e
scenarios through day 4. At that point, one assumes thagafthk, the dateN j, j = 1,...,4, are
“true”, constructs a PDF based on this data and samplesaluditainK new time series for each
k. Although this can be easily continued, it is clear that thenher of possible paths through the
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attack grows rapidly. In this paper, we confine ourselvesisbthe two stages, but the extension to
more stages is theoretically possible.

We have not yet specified in the objective function, but we note that the constrainesadl linear.
Thus, ifM is a linear function, we have a classical linear programnpraplem for which there
are many excellent algorithms available. If we tdkeo be the identity operator, i.e.,

.
M(Dy) =Dk =y Dy; (4.6)
=1

then we are simply computing the expected number of deatkadh scenario, and

D= Dy (4.7)

Xl =
M =

k

1

is the expected number of deaths over all the scenarios.hHsi&n obvious appeal; results using
this choice oM are reported in the next section. A potential problem witk ihthat scenarios with

a large number of infected people could dominate the dewsiBecall our assumption that people
arriving later are better candidates for treatment; in anade with a large number of people, the
algorithm would delay the allocation of resources much nsaréhan for a scenario with a much
smaller number of infected people. It could be argued trasdmpling procedure should properly
account for this, but one could also divibg by the total number of people infected in scendtio
This downplays the influence of the larger cases, while kegfie problem linear.

A different approach, related to the work in [37], is to cortgothe optimal number of deaths for
each scenario iKK separate problems. Call the resultg". Then one could obtain an allocation
that stays as close as possible to all of these in some semsgural way to do this is to minimize
the variance between the vector* and the vectoDy resulting from any other allocation. In
particular, one could use

K
z (Dx — Dk*)?

as the objective function. In [37] we referred to this as #est-regret formulation with the inter-
pretation that the allocation made today is the one that Wéeast regret in the future since it does
reasonably well for all scenarios. As above, we could scatd ®f the terms by the total number
of arrivals in that scenario. Since this is a quadratic fiomtthe optimization is now a convex
guadratic programming problem; again, good algorithmstexihe computation of eadby* is a
small linear programming problem that is solved quickly. eCadvantage of the least-regret for-
mulation is that is produces an allocation schedule, iregllbcation for each day over the entire
course of the episode. This provides the emergency manateawetter planning aid than just
the allocation for today. Thus, in our reporting below, wécotate the allocation for today using
the problem in figure 4.1 and then calculate the scheduld®ramaining days using least regret.
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We now present some numerical results illustrating sombaefdsues raised here.

4.2 An attack on one city

To explore the approach, we first generated a test case ingohn anthrax attack on a sin-
gle city. This is described in [37]. Briefly, an aerosolizesttaax release is simulated over
a domain with spatially variable population density. Pas tilistribution and an atmospheric
dispersion model, 22,384 individuals are infected with ageof doses, with an average dose
of 1470 spores. People develop symptoms over time; the tenessfor the first 10 days is
{3,123 71920462202 2194 2058 1918 1656}. This time series was used to draw 100 samples
from the joint PDF of the attack parameters using a singlegmment random-walk Markov Chain
Monte Carlo (MCMC) sampler. Note that these samples wensredter the MCMC sampler had
“burnt-in” and had “converged” per thecgi bbsi t package irR (Chapters 7 and 8 in [38]; also
see [39]). For each attack parameter sample, 10 epidentizatens were calculated (the forward
model is stochastic), resulting in a set of 1000 epidemitizat#ons (or scenarios). Such ensem-
bles, generated from the first 5 days of data in the time-sati®ve, are plotted as the gray region
in Figure 4.2. Note that we measure time from the day that tisegerson was diagnosed with
anthrax (rather than the time of attack/infection). Theribhation developed with data collected
through Day 7 is much narrower than that through Day 3, comfignthat the addition of 4 extra
days of data significantly reduces the uncertainty. Thisnoadeen plotted here.

The model was implemented in AMPL [40, 41, 42] and used theE2oPL1 [43] simplex method
to solve the problems.

We ran many tests based on the model described above. We fixexlailable resources such
that they could treat 10,000 patients (out of the 22,384ctefd), i.e., they are scarce. Our first
observation is that the form of the functidh does not make much of a difference in the results.
Thus all of the results we show here were calculated usir®) (4.minimize the expected deaths
(4.7). Our second observation is that the penalty paranmgtshould be taken to be a small value
to ensure its desired effect. After some tests with sevexiales ofp, summarized in Table 4.1, we
chose us@ = 0.001 for all of the results reported here.

Table 4.1.Effect of p ona and expected deaths (4.7).

P a D
0. 10000 9358.0
0.0001 2384 9358.0
0.001 2364 9358.0
0.01 2317 9358.2
0.1 2261 9360.2

In Figure 4.2 we plot the allocations, given a resource dehatawn from 5 days of observations
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in the time series. The gray region denotes the ensembleenbsios. The time-series values used
for the inference are plotted with triangles; the future extvations in the time-series are plotted
with diamonds. Allocations were calculated for= 0.04 and 01. Clearlyc makes a significant
difference. Recall that there are two possible reasonsnfiosing a constraint on the amount
of resource that can be shipped on a given day: the first isthigimay simply be a logistical
constraint; the second is that the emergency manager maytovaonserve resources as a hedge
against a subsequent attack. Observe that our formulatijjcomputes the allocation for Day 6;
to give managers an idea of allocations that might be ap@i@on subsequent days, we obtain
tentative allocations for days T-by averaging the allocations for each day over all of the sges.
(Subsequently arriving data should influence the actuatatlons for later days.) As is evident
in Figure 4.2, the severe restriction imposeddy- .04 implies that many fewer resources can
be allocated than for the lighter restriction®f= .10. Thus there is a commensurate increase in
the number of deaths witth = .04, as we show in Figure 4.3. Here we plot the PDF of excess
casualties (over the optimal/minimal level that we woulgdachieved had we perfect knowledge
of the epidemic) for the two values of As might be expected, the effectof(i.e., the placing of

a ceiling on how much can be shipped on a given day) is felt ipairthose scenarios that project
a large number of infected people turning symptomatic. \Be ake that increasirgnarrows the
PDF (we reduce the long-tail probability of an extremely e outcome) while raising the peak
of the PDF and moving to lower values of excess casualteesjncreasing the probability of a less
adverse outcome. Since the probability mass under the PDRIss is tantamount to increasing
the probability of a certain (acceptable) level of casealtvhile simultaneously trading it to reduce
the probability of an extremely adverse outcome — a classilging / risk management operation.
This is captured quantitatively in the change of shape oPDE witho.

For o > 0.20 we obtain an allocation (not shown here) resulting in ery excess casualties in
each scenario. These results show that the model can bearseséssing the effects of conserving
resources in anticipation of a second attack or for planpungposes to see the need for a higher
shipping capacity.

One could also compare the PDFs of excess casualties if eeregpproach to resource allocation
was considered, e.g., given & one allocates on a scenario-by-scenario basis (leaditgd@
allocations), then simply uses the mean of these allocaiti®uch a “naive” allocation results in
a very long tail (see [37] for a comparison) and is not very petitive for hedging purposes vis-
a-vis the more sophisticated techniques considered Imefend37]. For the rest of this paper, the
“naive” approach will be ignored.

4.3 Anattack on two cities: The “reload” case and the equililpation
of pain

The main complication in dealing with an attack on two or maties is in deciding how to allocate
the resources among all of the cities. From the point of viéthe model, it does not make any
difference if a life is saved in the first city or the secondughwithout further constraints, there is
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an inherent non-uniqueness in the solution of the problé@meghe optimal number of deaths can
be achieved in many ways, including the extreme one of sgnalirof the resources to one city

and ignoring the other. In practice, it seems reasonabledomae that there will have to be some
“social” or infrastructural constraint to ensure that aties are treated fairly. We illustrate how

this could be achieved below, but first we deal with anoth&res namely that of whether or not to
anticipate subsequent attacks.

As noted in Section 4.1.1 an emergency manager may wishttacteke amount of resources that
can be shipped on each day. This is done by imposing the eamtstr, ; < oR. The manager
could equally well choose to conserve some of the resources in case there is a subsatfaek,
the “reload” case. If there is a subsequent attack, there iway to say anything about it until
there is some evidence in the form of people in the seconaunitying at the local hospital in need
of treatment. As is the case for the first city, a few days oadae required before any reasonable
PDF can be computed and sampled.

Extending the basic model above to the case of several @tssaightforward. The major addition
for the reload case is the social constraint. We illustragegossibilities with a simple constraint
that seeks to ensure that each city receives a proportionaliat of the resources. A way to do
this is to impose the constraints

Di/AiS(l—i—n)];Dj/];Ai,

whereD' are the deaths in citiy A; is the total number of patients in cityandm e [0,1]. For the
results reported here, we usad- 0.1, so that the relative resource allocations are within 10%.

We demonstrate this allocation approach on a simulatecdeszenario. The first attack (on
City A) is the same as in Section 4.2. However, on Day 3 of the &ttack, City B records an
anthrax diagnosis and it is verified that it too has been legthc The time-series for City B is
{0,0,1,76,711, 176527203099 3186 2896} for the first 10 days. The attack on City B was sim-
ulated in the manner described in [37]. 29,861 people wdeeiad, with an average dose of 2749
spores. The two attacked cities therefore have a resouroarttd of around 50,000 units. In the
study below, we will assume that only 25,000 units are alséela

The allocations are shown in Figures 4.4 and 4.5 for Day 6@#attack, i.e., we have a time-series
5 days long for City A and 3 days long for City B. The gray regiarFigures 4.4 and 4.5 show
the ensemble of scenarios for the two attacks; as expetie@nsemble for City B is far broader
than City A, denoting a larger uncertainty arising from a Berdaime-series of observations. The
observed and unobserved evolution of the epidemic in thecttaes is plotted using triangles and
diamonds. The allocations developed with= 0.04 and 01 are plotted for Day 6 (and beyond)
of the epidemic. Note that the allocation is only meant foyBa Both the plots demonstrate
how allocations are curtailed asdecreases, leading to extra casualties, especially forasos
that project larger epidemics. Also note that the effectra$ felt mostly during the peak of the
epidemic; the allocations are similar towards the end. Téia consequence of our modeling
decision to slightly favor later allocations.
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In Figure 4.6 we plot the PDFs of excess casualties (over themam that we would achieved had
we perfect knowledge of the attack and the epidemic). Thesxcasualties for Cities A and B,
for 0 =0.02,0.04 and 01 are totaled and plotted. Note that the- 0.1 case is not at all restrictive
and one even has overallocation of resources (the “nedaiaseialties). This happens when two
exceptionally small scenarios for City A and B are consider&lote that thes value merely
places a bound on daily allocation; the constraint thaiyddibcations must add up to the available
resources is not violated. The hedging effectoo$een in Section 4.2 is also reproduced here,
though with a few modifications. In all cases, we see a mullishexcess-casualty distribution.
While 0 = 0.04 does manage to translate the excess-casualty PDF tdtthedea-viso = 0.02),
we see the width of its support is unchanged, i.e., the highkre of o reduces the expected
casualties (and consequently risk), but does not improyé#uge compared = 0.02.

4.4 An attack on one city with corrected data

As reported in Chp. 3, the raw data consisting of just the nemolb people who arrive on a given
day is not sufficient to create good PDFs, since we need to khewlay on which they became
symptomatic. In this section, we show the differences inRBd-s between the corrected and
uncorrected data and then show a series of resource aflosatiade based on the corrected data
over a 6-day period of the same attack. The results demoasiat the resource allocations early
in the attack are quite good. That is, even as we get additaata and the PDFs narrow, the
allocations do not differ very significantly.

Fig. 3.3 and 3.4 show the resulting set of scenarios from Daitl6the corrected and uncorrected
data. As one can readily see, there is a significant differ@mthe size and range of the scenarios
and thus there would be a significant difference in the atlooa.

In Fig. 4.7 we show the allocations schedules that are ctledlifor days 4-9. We assume that it
takes 3 days to ramp up the transportation infrastructureg®ource distribution purposes, thus
placing a constraint on the allocation that can be reaéiflyiperformed. Days 4, 5, and 6 show the
effect of this ramp-up to enable a full allocation of 10% ad tesources. Note that the form of these
allocations is nearly the same, i.e., we ship at high levally en the attack and then decrease the
shipments rapidly thereafter. Also note that the scendoiodays 8 and 9 are very close and so we
do not expect much change to occur after day 9. Also note iiithis case, a better reconstruction
of the epidemic (with more data) results in lower levels dbedtion (see the allocations for Day
6-9). Further, most of the allocation is done early with ac§uiurtailing of allocation later in the
outbreak. This is because as the outbreak is better defaoea/structed from data, the fall-off
in the epidemic curve becomes more certain, allowing a b@#ss uncertain) allocation in that
regime.
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Figure 4.2. Allocations for the attacked city, obtained from data
collected over the first 5 days. The gray region denotes thkiev
tion of all the scenarios considered. The net effea & to reduce
the allocation during the early days of the epidemic. R =Q0,0
The observed evolution of the epidemic is plotted with tias;
the future, unobserved evolution with diamonds.
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Figure 4.3. PDFs of excess casualties for= 0.04 and 01. R
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observed evolution of the epidemic is plotted with triasgléhe
future, unobserved evolution with diamonds.
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Chapter 5

Resource allocation for outbreaks caused by
communicable diseases

In this chapter, we will address the problem of resourcecalion in case of outbreaks of com-
municable diseases. As mentioned before, the processst®nsiwo elements viz. estimation of
outbreak parameters and the resource allocation proceles an uncertain characterization of the
outbreak (in the form of an ensemble of outbreak realizalion

The resource allocation problem for communicable disessesnsiderably more involved com-
pared to non-communicable diseases. In Chp. 4, where wasdied the allocation of equipment
and personnel in response to an anthrax attack, we assumethéhlevel of resource allocated
made no difference to the evolution of the outbreak. Thisasdose, unlike antibiotics which
suppress and can cure the disease, the resources condiegugoment and personnel) provide
palliative or supporting care. Thus the resource allocatioptimization procedure did not require
estimating the impact of the allocation on the outbrealfitemly the effect on casualties was
estimated. If any distribution of antibiotics disruptee tbutbreak, the data-driven methodology
would capture the disruption and predict a smaller outbgadugh with a time-lag, required to
collect sufficient data to capture the disruption).

In case of a communicable disease, equipment and persomneiast likely to be engaged in
disrupting the transmission itself, and any resource atioa procedure will require the evaluation
of its disruptive effect. This leads to an extremely compatwlly intensive procedure, which we
will not address in this study. However, there also exisbueses, e.g., drugs like Tamiflu, which
provide palliative/supporting care, whose demand es@mate set by the size of the outbreak;
the availability of such resources reduces casualties ¢émet losses) but does nothing to disrupt
the epidemic. However, if exogenous process (e.g., medesplonses like vaccinations etc) are
involved in modulating disease spread, their effect canaichpesource allocation greatly. Thus
such modulations need to be captured for a proper estimatiggsource demand.

In our study we will concentrate on resources that providégtize care during an epidemic of a
communicable disease. The procedure developed for anith@Rp. 4 is directly applicable, and
we will not demonstrate its performance such epidemicsh&atve will develop an estimation
procedure for the important epidemic parameters, with tieeustanding that posterior predictive
calculations (which result in an ensemble of outbreak za#ibns) and the least-regret calculations
are identical to that of anthrax and therefore need not bestinyated further.
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5.1 Disease dynamics

Epidemics of communicable diseases show rich dynamicstirgdrom a few index cases, they
spread. In certain cases, the outbreak may cease becausdaf transmissivity or because it
infects a relatively unconnected clique of people. In otteses, it spreads widely, till changes in
social behavior (usually social distancing) halts its adse Thus the infection intensity (rate of
new infections) initially increases in time, before seaiglinto a decline. This temporal variation
of infection intensity cannot, of course, be observed; astnooe may know the number of people
exhibiting symptoms, at the end of their incubation peridgpically (e.g., for smallpox, plague,
influenza and a host of diseases), the incubation phase ontgious, and transmission starts
only after a person shows symptoms. The symptomatic are ofeasured/recorded when the seek
medical care; if this data is used to analyze an outbreaknuurst also accommodate a reporting
delay, as described in Chp. 3.

In this chapter, we will attempt to infer outbreak parametef a communicable disease from
a time-series of symptomatics (and NOT people seeking rakdare, i.e., we will not include
reporting delay in out inference) collected on a daily ba3isus we have a time-seriesof the
number of new symptomatics on Dayover a time duration & t < T. We assume that there
exist a total of\;o; affected people, of which a fraction-1a are index cases. The index cases are
assumed to have been infectedays before the first exhibition of symptoms, i'es. 0. There
exists an unknown infection intensify(t; p), parameterized bp). The objective is to determine
estimates of Niot, 0, T, p}. Choosing the form of (t; p) is a challenge; sometimes the choice may
change as an epidemic progresses.

The data for the inference will be obtained from agent-baseuilation of a communicable dis-
ease. The technique depends on the existence of a sociarkdietween individuals (agents),
over which the spread of the disease occurs. A outbreak ysdeggendent on the index cases (or
rather the connectivity of the index cases in the social odtpand multiple simulations with the
samenumberof index cases (but with different choices of them) can leasdry different out-
breaks. The simulation technique is very similar to the am@leyed in [44] and is described in
detail in [23], Sec. 3.

Below, we formulate a Bayesian inverse problem, where weeléét; p) unspecified. Thereafter,
we demonstrate the inference technique on a plague and aanafl epidemic. In each case, we
describe the particulars of the transmission dynamics @otltbreaks. The true values g, T
and 1- a are known from the simulation and are provided for compariaath inferred values.
The estimates gb as a function ofy; are also provided.

5.2 Formulation of the inverse problem

Consider an epidemic that has been observed in the timeiolu@& t < T, during which time,
Niot = Ning + Nsechave been infected. This includes thgy index cases ansecsecondary cases.
For largeT, o = Nse¢/Niot &~ 1. Assume that the index cases were infected at time 0.t =0
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indicates the time the first person (one of the index casesyskymptoms and starts spreading
the disease.

During the time-period0, T|, there exists a time-dependent infection intensity givealq f (t; p),
which is the rate at which people are infected. The funcfiiap) is unknown and models the
spread of the disease, which in turn is governed mainly bgdiec&al network and the transmissivity
of the disease. Note that

/OT f(t;p)dt=1 (5.1)

The limits of integration arg0...T] since this is the time-duration over which symptomatic pa-
tients spread the disease. Consider the time-safies= 0...m of new symptomatic cases that
appear in the time-intervati_1,t),ti —ti_1 = At = 1 day. n; is a mixture of index cases and
secondary cases turning symptomatic and can be given by

T
79— N (1) €6 ~Cl-9] ot | F(P)IC(~9) ~Clt1-9)]ds)
n = nirnodel+£ (5.2)
whereC(t) is the cumulative distribution function (CDF) of the inctiboa period of the disease
ande ~ N(0,0?) is a measurement error.

Thus given a set of outbreak parametfgy, o, T, p}, the likelihood of observing the time-series
ni,i=0...mis

m . nmodeh2
Ti(n;,i = 0...MNot, 0, T,p) = exp(— Z'ZO(n'ZOS' ) ) . (5.3)

Using Bayes’ theorem, the joint posterior probabilit§N:ot, o, T, p) conditioned on data is

s o(nj — nmodeh?2
202

TU(Ntot, O, T, p[N;, i =0...m) zexp( )nprior(Ntot,a,r,p) (5.4)

The posterior distribution can be sampled using a MarkoviCieonte Carlo (MCMC) method
and marginalized to obtain probability density functions éach of the parameters in question.
We use a simple random-walk MCMC to sample the posterior.théugr to assist in sampling
we reparameterize the problem in terms of the logarithm$iefgarameters (except forwhich,
since it is a negative quantity, is reparameterized in tesfdeg(—1)). The priors on each of the
parameters are assumed independent, are vague and areechadatormal distribution, unless
mentioned otherwise.
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5.3 Testcase 1. A plague outbreak

In this section, we consider the inference of a plague oatbré-irst, we describe the epidemic
model.

5.3.1 The outbreak simulation

The epidemic is assumed to evolve over a graph. Nodes in #hgepresent people and the
edges represent social links over which the disease cou&hpally travel. The transmission is
stochastic and is modeled as a Poisson process witiA rdéach node undergoes a susceptible —
exposed (i.e., incubating) — infectious — removed sequenitk removal denoting recovery (and
immunity) or death. The mortality rate for PPP, if left uratted, is 100% [45]. Treatment during
the incubation phase has a 100% probability of success [#&atment during the infectious
(symptomatic) phase is unknown.

Each node, on being infected, resides in the exposed and infectioasgshfor timag andt,. 1
andrt, are random variables obeying a log-normal distributiorhwiteans (SD) of 4.3 (1.8) and
2.5 (1.2) days. These are obtained from [45].

The transmission model on a network is somewhat differemb frypical ODE-based SEIR models.
In [46], it was observed by following infection networks thiae effective reproductive number of
PPPR(T) could be expressed as

R(T) = Ryexp(—3T) (5.5)

whereRy = 2.99, 6 = 0.0615 andT is the time measured since the start of the epidemic. On
the other hand, in [45], a “steady-state” reproductive namvzas assumed, and was found to be
equal to 1.3. Curiously, if one averages W) over 30 days (the duration of the Madagascar and
Mukden outbreaks considered in [46]), one obtains an aedRag 1.39. However, a reproductive
number over 1.0 as proposed in [45] would indicate an epidehat grows without bounds; on
the other hand the expression in Eqn. 5.5 ensures that terap will eventually die down.

Egn. 5.5 is adapted for use in a network model. We proceedllasvi Consider a nodewith
incubation and infectious periods of andt,. Consider, too, that social linkg exist between
nodes and |, j € L;j, whereL; is the set of nodesis connected to (i.e., nodi&s neighbors). Let
ILj| denote the number of neighbors nades.

When nodse is infected, it is allocated a reproductive number per EqB. &(T;) denotes the
number of people will infect over the period, whereTi is the time that was infected (this also
ensures that the time-varying nature of the effective répetive number is captured).

Sincei has|L;| neighbors, a subset of them are marked for potential irdadbyi. We iterate
through them and mark them for infection (via transmissiomti) with probability R(T;) /|Li|. If
L; contains nodes which have already been infected, they gypeskover in the iteration process.
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Once the potential “victims” of are marked, we proceed with the dynamics of transmission.
Consider a nodg, j € Lj which has been marked for infection. The probabiliy thati will
infect j is given bypjj = 1 — exp(—aiAitij) whereh; = 1/1; is the rate of infectiont;;j is the time
duration over which transmission could have occurred betweand j (essentially, duration of
contact betweem and | afteri turned infectious) and; is a constant (for a given nodg that
ensures that will succeed in infectingj with a probability of 0.9999 (i.e., 1.0 - 10) by the
conclusion of its infectious period. Thes = —In(107°).

5.3.2 Inference of outbreak parameters

Fig. 5.1 shows the temporal evolution of an outbreak. We siin 100 index cases, who infected
an 1063 people over the next 43 days. Plotted in red are thespmptomatic cases, collated on
a daily basis. It is noisy, and peaks at around day 15; thiere#fdecays, indicating a weakening
epidemic. Plotted in blue is the latent infection intensisya function of time. We see clearly that
for the first 10 days, the infection intensity rises, aftenethit settles into a decline over the next
30 days.

Inferring the infection intensityf (t; p) is key to predicting the evolution of the outbreak and con-
sequently the resource requirements. We model the infeatiensity as & distribution, i.e.,

. atke) 1 t\ k-1 t
"GP = 5T ke ~ BykT/0) (5) oo(g) (5-6)

wherey(k, T /0) is the incomplete Gamma functiagy,; ) is the Gamma probability density function
andG(;) is the corresponding CDF. Note that the expression in Eqobdys the normalization
Eq. 5.1. Also, the parametepsare the shape] and scalef) parameters of the Gamma distribu-
tion.

Following the description in Sec. 5.2, we perform an infeenf the outbreak parameters using a
time-series 20 days long. Over this duration, an extra 8@pigewere infected via transmission.
The inference was performed using the transformed vaisafple., the log-variables), though all
results will be shown in terms of the variablfs;ot, 0,1, 0,k}. The priors used are

log(Ntot ~ N(log(10°),10),
o ~ B(1.251.25),

log(—T)
log(6) ~ N(0,2?),
log(k) ~ N(0O,1)

The first two prior are recognizable vague. The incubatiaropledistribution for plague [45], with
a median of 4.3 days, ensures that given 100 index cases, apdawe, with high probability,
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Figure 5.1. Evolution of the plague epidemic. New cases of
symptomatic patients are plotted in red while the latent¢gtibn
rate (daily infections) are in blue. The simulation waststmwith

100 index cases distributed in the social network. We sea) the
symptomatic cases, that the epidemic peaks around Day 16. Th
infection rate peaks a few days before.

one symptomatic case withexdays of infection. Similarly, the prior fd, indicates that the time-
scale for the decline of the epidemic may varydydays, approximately a week. The prior for
k was chosen so that the rise in infection intensity would heyhty linear, a results that can be
obtained from early-epoch linearization of conventionalf$ epidemiology models. The standard
deviation of the measurement erroris set to 10.

In Fig. 5.2 we plot the MCMC chain and the histograms of the@asof the outbreak parameters,
i.e., of{Not, 0, T,k}. The chains mix properly, i.e., ergodicity of the MCMC charmachieved. The
histograms on the right indicate the posterior marginalidistribution of the outbreak parameters.
In Fig. 5.3, we determine the maximuarposterioriestimates of the outbreak parameters and plot
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Table 5.1. Estimates (medians) of the outbreak parameters devel-
oped from time-series of different lengths. The 95% configen
intervals are mentioned in parenthesis and the true valkeefa
square brackets.

Variable m =10 m=15 m =20 m =25

Nt | 397 (284,609) | 673 (537,1133)| 848 (743,974)| 1024.4 (927.6,1612.2)

[497] [725] [905] [1048]

a | 0.79(0.63,0.95] 0.87 (0.39, 0.96)| 0.90 (0.67,0.98)  0.92 (0.41, 0.98)
[0.80] [0.86] [0.89] [0.90]

T |-1.75(-4.7,-0.4) -1.9 (-10.6,-0.5)| -1.9(-9.1,-0.5)| -2.0(-13.8, -0.5)
[-2] [-2] [-2] [-2]

0 6.5 (0.79, 125) | 10.4 (2.16, 156.6) 10 (3.5, 75) 10.2 (4.8, 36.5)

k 2.3(1.2,7.2) | 2.13(1.32,4.7)| 2.0(1.25,3.84) 1.98 (1.28, 4.98)

the corresponding latent infection intensity; the actogmsity too is plotted as a comparison. The
blue dot at the left extreme is the number of index cases; timeenical estimate from the time-
series has not been plotted. For both 10 and 25 days of datagevéhat the infection intensity
is properly captured, including the downturn in the infeatintensity, as the outbreak begins to
decline. The infection intensity curve from the 10-day tisezies is seen to underpredict future
infection intensities; the one developed from the 25-danetseries over-predicts it. This is a con-
sequence of the Gamma-distributed model trying to caphgestochastic nonlinear dynamics of
the spread of the disease on a social network. A more medltamedel of the disease spread
would likely provide a better bit, but it is unclear what sweimodel would be, which preserves
the speed and parsimony of a Gamma model. In Table 5.1, we atmethe outbreak param-
eter estimates drawn from time-series of different lengtRste that the true values &%, and

a are functions of time, i.e., they increase as the epidenuogresses. We see that the inference
procedure is fairly accurate; further, the simple modeltfa infection intensity is quite success-
ful in summarizing the involved stochastic transmissiomaiyics simulated in the agent-based
simulation.

5.4 Testcase 2: An influenza outbreak

In Sec. 5.3, we showed how an outbreak that “failed to takéaaftild be modeled and inferred
from a short time-series. The Gamma-distribution modehefihfection intensity can be used to
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Figure 5.2. The MCMC chains for the outbreak parameters
{Not,a,T,k}, plotted in sequence, from top to bottom, on the left.
On the right are the histograms of the samples of the outljpaak
rameters. These were developed from a time-series 20 dags lo
The figures fo® were left out for lack of space.
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Figure 5.3. The latent infection intensity curve, developed from
the maximum likelihood estimates of the outbreak pararsetes-
ing 10 and 25 days of data. The true infection intensity i® als
plotted. The blue dot at the left extreme indicates the intheses;
we have not plotted the numerical estimate derived fromithe-t
series.

approximately infer characteristics of an endemic disé¢asere the infection intensity reaches a
constant) by employing a large value for scale paramg@tddowever, it is not very useful for a
large pandemic that grows in time.

Given the recent interest in swine flu [47, 48], we simulaténdinenza epidemic which proves re-
sistant to countermeasures and therefore grows “unbouifided before saturation effects become
important). This is done with our agent-based simulatigratality, with parameters obtained from
the 1918 pandemic. These results are then used to inferaaktiparameters.
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5.4.1 The outbreak simulation

The disease dynamics for influenza are slightly differeabfrthat of plague. While the disease
transmission occurs over a social network, the reprodectivmber does not decay in time (the
primary reason why the outbreak can become a pandemic)siiasion is modeled as a Poisson
process, but the disease shows 2 extra stages, comparegjtepll he different compartments of
disease progression are

1. SusceptibleS), people who can be infected.

2. ExposedK), i.e., people who are incubating the disease, but are maagmus. They move
on to the | and A stages described below.

3. Infectious (), people who are symptomatic and contagious. These pempbgeaerally the
ones who seek medical help and a fraction of them may be latiged and reported.

4. Asymptomatic and contagioud)( this being influenza. In fact most people infected with
influenza are in the A category. Such people are not very gomig, but they do exist in
large numbers.

5. RecoveredR); people from the | and A stages move into this stage.

6. Dead D); people from the | stage can move into this stage.

As discussed in [49], only about 36% of the people in the 19diflemic in Geneva progressed
from theE to thel stage in the (more virulent) “fall” version of the diseasethe “spring’ version,
only about 10% of the people showed severe symptoms. Futtieeasymptomatic patients were
far less contagious; the parameter estimates in [49] shawtkie contagiousness of the asymp-
tomatic were 0.003 and 0.014 times that of the symptomatiema. In our model, we will
assume that the asymptomatic cohort exists, but is not gmts. Mortality rate was 0.7% for
the “spring” outbreak and 3.25% for the “fall” outbreak [50jVe also limit our simulation for a
short period of time so that births and deaths in the genenaiilation do not appreciably affect
the progress of the disease.

Each node spends a duration in each of st&gésandA. These durations are modeled as random
variables. Bombardt [7] models tHe phase with a lognormal and thephase with a normal
distribution, which we adopt here.Bombardt states the teamand standard deviation for the
E stage are 2 days and 1 day respectively, while thosé &iage are 5 days and 1 day. Gani
et al. [50] find that the mean incubation period (i.&,stage) is 2 days for pandemic influenza
(specifically H5N1 “avian flu”) and 4 days for the symptomaiiriod. Longiniet al. [51] and
Mills et al.[52] cite 1.91 and 4.1 days respectively for the mean valoegfand| stages, even
though the first publication targets the 1957-1958 and 188 influenza pandemics while the
latter models the 1918 pandemic, with data collected frontlii8s. The recent swine fld stage
has been estimated to be 1.9 days too [48]. Thus, the charatien of the progress of the disease
seems consistent.
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Table 5.2. Summary of influenza characterization from a variety
of sources. All estimates of duration are in days.

Source Incubation E) | Symptomatick) Ro Remarks
Chowell [49] 2 2 1.49 & 3.75 1918, Geneva
Mills [52] 1.9 4.1 2.0 1918, US cities
Longini [51] 1.9 4.1 1.4 Southeast Asia; “regular” fl
Fraser [48] 1.9 - 1.58 Swine flu; Mexico, 2009
Gani [50] 2.0 4.0 1.39 1957, 1968 pandemics
Bombardt [53] lognormal; normal; 1918 Camps Custer
mean =2;sd =1 mean =5;sd =1 and Valdahon

I

The basic reproductive numb&y shows significant variations. Chowaelt al. [49] report aRy

of 1.49 for the “spring” outbreak and 3.75 for the “fall” oudak in Geneva, 1918. US cities, on
the other hand, showed &g of 2 in 1918 [52]. Studies for influenza epidemic (mostly HM1L
Southeast Asia [51, 50] have tended to assurRg @f 1.4, which is similar to th&y observed in
the recent swine-flu epidemic [48] (1.58). We summarize éselts reviewed to date in Table 5.2.

For our modeling purposes, we chooseamsensuset of figures. We will model incubatioBi
as Bombardt does, i.e., as a lognormal distribution withm2aays and standard deviation of 1
day. The symptomatic stagewill be modeled using a normal distribution, with a mean ofa4/sl
and standard deviation 1. The asymptomatic stagal be modeled identical td, except that the
cohort does not suffer deaths. We assume that only 36% ofdbpl@ coming out of incubation
will progress to thd stage, with the rest moving on to tiAecohort. Since we aim to capture the
1918 effects, we will assume a mortality rate of 3.25% aridthat corresponds to By of 3.75.
On recovery, people are assumed to be immune to influenzaseTdre summarized in Table 5.3
below.

The implementation of the disease model is the same as irbSeand is omitted.

5.4.2 Inference of outbreak parameters

Fig. 5.4 shows the temporal evolution of an outbreak. We stiin 100 index cases, who infected
26479 people over the next 42 days. Plotted in red are the yeptematic cases, collated on a
daily basis. Plotted in blue is the latent infection intéyais a function of time. Both the infection
intensity and the new symptomatic cases (collated dailgyvsiamonotonic increase.
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Table 5.3. Summary of parameters for our influenza model.

Model Parameter Value
Incubation periodk) log-normal, mean = 2 days, std. dev. =1 qay
Infectious period|() normal, mean = 4 days, std. dev. =1 day
Asymptomatic period4) same a$
Infectious fraction 36 %
Mortality rate 3.25%; applies only to thiecohort
Ro 3.75
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Figure 5.4. Evolution of the influenza epidemic. New cases of
symptomatic patients are plotted in red while the latengdtibn
rate (daily infections) are in blue. The simulation wastst@mwith
100 index cases distributed in the social network. We sddtita
the time-series exhibit an upward trend.

Inferring the infection intensityf (t; p) is key to predicting the evolution of the outbreak and con-
sequently the resource requirements. We model the infeatiensity as follows

oy a(expt/b)—1)
H(EP) = ablexp(T/b) 1) aT

(5.7)

whereT is the time duration over which the infection process hasioed. The expression in
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Table 5.4.Estimates (medians) of the outbreak parameters devel-
oped from time-series of different lengths. The 95% configen
intervals are mentioned in parenthesis and the true valkeefa
square brackets.

Variable m=15 m =25

Not | 1671 (795, 13873) 5220 (2994, 29691

[1474] [4614]
a 0.54 (0., 0.92) 0.78 (0.04, 0.98)
[0.93] [0.98]
T -4 (-19,,-0.1) -6.8 (-28, -0.27)
[-1] [-1]
a 2.73(1.06,15.8) | 2.8 (1.2, 14.8)

b 104.9 (26, 1.210°) | 192 (11.3, 2.x10°)

Eq. 5.7 obeys the normalization Eq. 5alandb are the governing parameters of the infection inten-
sity and form the objects of inference from data. Following tlescription in Sec. 5.3, we perform
an inference of the outbreak parameters using a time-sefridifferent lengths. The problem was
reparameterized in terms of the logarithms of the quasthiging inferred, i.e{Niot, 0, T,a,b}.The
priors used are

For the purposes of this study, the standard deviation ofrtbasurement errar is set to 50.

In Table 5.4, we summarize the outbreak parameter estirded@s from time-series of different
lengths. We see that the size of the epideiig is estimated fairly accurately, but there are
significant errors in estimates of the rest of the parametéhss is conjectured to be due to the
exponential nature of the infection intensity, which mattes predictionsi"%®! very sensitive to
the model parameters. We are currently investigating hgvanameterizing may ameliorate the
sensitivity and allow more robust inferences.
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Chapter 6

Conclusions

Our study of resource allocation techniques in reload stesnavas driven by the realization that
mounting a quick and efficient response to a bioattack hdlddargest potential to reduce casu-
alties and minimize impact on the affected population. Teedaarly warning via detection of
aerosolized pathogens by environmental sensors has bagad/as the optimal way of determin-
ing when and how to mount a medical response. We consideadewhen an attack may be not
be detected by such sensors either because the site wasstratrianted or if the pathogen was
introduced via a vector (which, for communicable diseases)d be humans). In such a case,
the estimation of resource allocation have to be perfornsaiguthe time-series of morbidity (di-
agnosed cases etc) that would result from the ensuing @kbte our study, we have restricted
ourselves to resources like medical equipment and persavimeh are difficult to gather and
transport.

We have developed an approach that allows the estimatiottaxfkéoutbreak parameters from
short time-series of morbidity data. The attack parametzs the number of infected people, the
time of attack and the dose, can be related to the time-depémnidmand for medical resources
directly using existing epidemic and resource-use modélse attack parameters are estimated
probabilistically, which reflects the uncertainty due tokéguality of the data. The attack param-
eters are used to bound the possible realizations of themesaemand; thereafter, a stochastic
optimization algorithm develops a resource allocatiorfifgdin time). Resources are assumed to
be insufficient (hence an efficient allocation is paramauri)s can be used to dispatch resources
in the short term and plan for transportation needs in the lemm. We find that our resource
allocations amount to hedging — they render the probaluktysity function of casualties resulting
from a resource allocation profile compactly supportedijdating a significant reduction of the
probability of an exceedingly bad outcome. The price fouadg this probability is the increased
probability (almost a certainty) of a smaller, perhaps atakle, level of casualties. Our test cases
have involved single-site attacks as well as staggeredkatan multiple sites, where the resource
demands at different sites have different levels of una@staThe observations above hold true in
both cases; further, for multi-site attacks, our allocatechnique ensures “fairness”, i.e., there are
no hot-spots of risk which could endanger the entire systenta&scading failures. We observe,
empirically, that resource allocation profile does not vsignificantly (by more than 25%) after
about 6 days of data. This lack of volatility in the allocatiprofile is helpful since it assists in
planning for the mobilization of infrastructural capabés (and to some extent, resource reserves).

Our algorithm involves a “free” parameter. An optimal valakthis “free” parameter cannot
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be gauged from the time-series of morbidity and thus is emogs to the problem at hand. It
represents a “risk appetite” and takes the form of a congtaai the daily allocation of resources.
This constraint can be used to prevent an over-allocatioesiurces, a recourse that may prove
important in the aftermath of an attack, if further attacks expected and resources have to be
husbanded. More practically, this constraint may be useehforce resource allocation which
conform to the dictates of the transportation infrastruetdn the immediate aftermath of an attack,
the available rolling/transportation stock may simply hsufficient. The constraint can be made
time-dependent, to reflect the mobilization of infrastuat capabilities to meet an emergency.

The technique works well for outbreaks/attacks carriedvaithh pathogens causing non-commu-
nicable diseases. The problem of epidemics caused by coioail® diseases is more difficult,

primarily as it poses a harder (non-stationary) estimagpi@blem. We have outlined an estimation
approach here, but itis limited by the simple epidemic medabloyed in the estimation algorithm.

This is an area that should be investigated in more detailyesource allocation techniques can
find use in responding to endemic diseases (and their pegsiioidemic variants). Our example in
Chp. 5 used influenza modeled on the fall variant of the 1918l@mnic.

In our study, we have not attempted to model the imperfestmintransportation infrastructure
beyond assuming that there is an initial mobilization deldgwever a 25% volatility in resource
allocation is not trivial, and advanced routing algorith(f rolling stock) may be required to
accommodate it. Routing on networks is an enduring probleroperations research, and our
technique for estimating uncertain demands/throughgwisrgain points in the network may allow
the application of network routing algorithms to a new fiefdhational security/interest.
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